FP7-PEOPLE-2008-IAPP

Indoor radio network PLANning and optimisation

D3.1: Indoor Radio Network P&O Suite of tools

Contractual date of delivery to EC: Month 21 Actual date of delivery to EC: 10/03/2011 Lead beneficiary: Ranplan Wireless Network Design Ltd. Nature: Public/Unlimited Version: 1.0

Project Name: Indoor radio network PLANning and optimisationAcronym: iPLANStart date of project: 01/06/2009DurationProject no.: 230745

Duration: 48 Months

Project funded by the European Commission under the People: Marie Curie Industry-Academia Partnerships and Pathways (IAPP) Programme of the 7th Framework FP7-PEOPLE-2008-IAPP

Document Properties

Document Number	FP7-PEOPLE-2008-IAPP-230745-iPLAN-D3.1
Document Title	Indoor Radio Network P&O Suite of tools
Lead Beneficiary	Ranplan Wireless Network Design Ltd.
Editor(s)	Joyce Wu (Ranplan)
Work Package No.	3
Work Package Title	The development of indoor radio network planning and optimisa- tion tools
Nature	Report
Number of Pages	87
Dissemination Level	PU
Contributors	Ranplan: Peng Wang

Table of contents

0	Executive Summary 10					
1	Introduction11					
2	I	ndoor Radio Network Design and Deployment Overview	15			
	2.1	Capacity Dimensioning	16			
	2.2	Signal Source Selection	16			
	2.3	Radio Network Design	16			
	21	Installation	17			
	2.4		17			
	2.5	Test	17			
3	il	BuildNet Working Environment	18			
	3.1	The Menu	19			
	3.2	The Toolbar	22			
4	В	Building Structure Modeling	24			
	41	Import DXF File	25			
	4	.1.1 Configure importing parametres	25			
	4	.1.2 Configure origin point	26			
	4	1.3 Configure scaling ratio	26			
	4	Eres Stale Deguine	20			
	4.2	Free Style Drawing	27			
	4.3 4	3.1 Import background image	28 29			
	т		2)			
5	D	Database Management	31			
	5.1	Device Database	31			
	5.2	Material Database	31			
	5.3	System Database	32			
6	D	Device Layout Design	35			
	6.1	Network System Design (NSD)	35			
	6	.1.1 Network System Design Toolbar	35			
	6	.1.2 Add Devices	36			
	6	1.3 Device Properties	39			
	0 6	1.5 Auto Layout	41 47			
	62	Floor Layout Design (FLD)	48			
	6	.2.1 Send Devices from FLD	48			
	6	.2.2 Design Floor Layout	49			
7	S	ystem Performance Evaluation (SPE) and 3D Display	50			

7	.1 SPE	E Introduction	
7	.2 Cor	ifigure Propagation Models	
	7.2.1	General Parametres	
	7.2.2	Scenario Parametres	
	7.2.3	Network Parametres	
	7.2.4	Emitter Parametres	
	7.2.5	Miscellaneous Parametres	
7	.3 Syst	tem Performance Calculation	
	7.3.1	Create New Performance Index Evaluation	
	7.3.2	Start Calculation	
	7.3.3	End Calculation	
	7.3.4	View SPE Result	
	7.3.5	Re-use Current Path loss Data for Other Predictions	
	7.3.6	Force Calculate Prediction	
	7.3.7	Edit Legend	
	7.3.8	Obtain Statistic Information	
7	.4 Prin	nting	
	7.4.1	Generate image	
	7.4.2	Print Preview	
	7.4.3	Print	
7	.5 Cor	nclusion	
8	Projec	t Report	
8	.1 Ger	nerate Report	77
	8.1.1	Equipment List Report	
	8.1.2	Cost Detail Report	
	8.1.3	Cable Routing Report	
	8.1.4	Layout Plan Report	
8	.2 Prin	nt Report	
8	.3 Exp	port Report	
	r	rr	
9	Conclu	usions	
10	Refere	ence	86
11	Glossa	ary of Terms	

List of Figures

Figure 1. iBuildNet Work Flow Diagram	12
Figure 2. Traditional Indoor Radio Network Design Procedures	15
Figure 3. Main User Interface	
Figure 4. The Menu	19
Figure 5. File Sub-Menu	19
Figure 6. Edit Sub-Menu	
Figure 7. View Sub-Menu	
Figure 8. Insert Sub-Menu	21
Figure 9. Tools Sub-Menu	21
Figure 10. Report Sub-Menu	21
Figure 11. Help Sub-Menu	
Figure 12. The Toolbar	
Figure 13. 3D Building Modelled in iBuildNet	24
Figure 14. Import AutoCAD dxf file	25
Figure 15. Import dxf Dialog	
Figure 16. Filter Data Layer	27
Figure 17. Drawing Tools	
Figure 18. Import Background Image	
Figure 19. Background Image Import Dialog	
Figure 20. Import Background Image	
Figure 21. Example of an antenna saved in device database	
Figure 22. Material Database	
Figure 23 System Database	
Figure 24. Select System Technology	
Figure 25. Start to Add an Antenna	
Figure 26. Select Device	
Figure 27. Choose an Antenna	
Figure 28. Place an Antenna	
Figure 29. View Device Property	
Figure 30. Open Graphic Object Property Window	41
Figure 31. Delete a Device	
Figure 32. Send Device	43

Figure 33. Choosing Cable	44
Figure 34. Connect Devices I	45
Figure 35. Connect Devices II	46
Figure 36. Port has been used	46
Figure 37. Cable Routing Style	47
Figure 38. Auto Layout	48
Figure 39. Send Device to Other Floors from FLD	49
Figure 40. Propagation Model Configuration Window	51
Figure 41. Propagation Model Configuration Window - Scenario Tab	52
Figure 42. Propagation Model Configuration Window - Network Tab	54
Figure 43. Propagation Model Configuration Window - Emitter Tab	55
Figure 44. Propagation Model Configuration Window - Miscellaneous Tab	56
Figure 45. Create a New Evaluation	58
Figure 46. Choose a Prediction Type	58
Figure 47. Configure Prediction	59
Figure 48. Choose Antennas Filtered by Field	60
Figure 49. Configure Display Parametres	61
Figure 50. Auto Define Legend Colour	62
Figure 51. Start to Calculate a Prediction	63
Figure 52. Check Calculation Progress in Task Bar	64
Figure 53. View SPE Result in FLD	65
Figure 54. View SPE Result in 3D Mode	66
Figure 55. Configure Display Setting	67
Figure 56. 3D View Display Setting	68
Figure 57. Calculate New Prediction Base on Previous Result	69
Figure 58. Force Calculate	70
Figure 59. Edit Legend	71
Figure 60. Open Statistic Dialog	72
Figure 61. Statistic Information	73
Figure 62. Print to Picture	74
Figure 63. Print Preview	75
Figure 64. Print	76
Figure 65. Generate Project Report	77
Figure 66. Example of Equipment List Report	78

Figure 67. Example of Cost Detail Report	79
Figure 68. Example of Cable Routing Report	80
Figure 69. Layout Plan Report	82
Figure 70. Print Report	83
Figure 71. Export Report	84

List of Tables

Table 1	. Comparison	of Different	Types of	Distribution System	ems	16

0 Executive Summary

The purpose of this deliverable is to present the indoor radio network planning and optimisation suite of tools. This suite of tools targets designing or tuning any indoor radio network in a fast and accurate manner. Existing indoor radio network design approaches will be reviewed during the development of the platform. This tool has an easy to use Graphic User Interface (GUI). It will be able to import standard building plans. It will enable users to define a building in detail, such as modify building plans and their constituting materials. The three databases that are used to manage devices, systems and building materials are integrated. The APIs linked to radio propagation model and planning and optimisation module are implemented.

1 Introduction

It has been verified by operators that nowadays most of voice and data services using wireless communication take place indoors. In the near future, new applications with ever increasing multimedia capabilities will require higher data rates for the end users. That is why indoor network radio coverage optimization will be the main challenge for all wireless telecommunication operators in the future. Over the past few years, mobile operators used to install their base stations outdoors. Hence a high number of wireless network planning tools have been developed, to help operators to find the best parameters for their network (for example the number of base stations and their positions or the output power and the antenna tilts). However, there were very few radio network planning and optimisation tools that can be used for indoor scenarios. It is critical to the cellular operators to have such a tool to design, optimize, construct and manage their indoor cellular networks. [1]

iBuildNet is a tool which is designed to be used for indoor radio network planning and optimisation. It will not only allow wireless network engineers to design an indoor solution for different types of buildings that resolve the indoor coverage gap, but also be able to perform an automated optimisation of their current indoor networks. This suite of tools works with all the current indoor solution structures, such as Picocells, Distributed Antenna System (DAS), Repeaters, Radiating cables, BBU+RRU and also Femtocells. iBuildNet is capable of design the indoor solutions for most of current wireless communication technologies (GSM, WCDMA, CDMA2000, LTE and Wi-Fi).

iBuildNet is able to load the floor designs (saved in different formats, e.g. DXF) of a building then model the floor designs into a 3D building. With a detailed definition of building materials, the integrated 3D ray-tracing propagation models will be able to predict the path loss between the antennas and anywhere within the building. Based on the radio propagation data that obtained from propagation model, the system performance, such as Best Signal Level, Best Server etc., can be predicted. With a build-in optimisation module, it automates to connect and route the cables from the signal source to each antenna. A work flow diagram is shown in Figure 1.

Figure 1. iBuildNet Work Flow Diagram

iBuildNet features include: [2]

- Import DXF files
- 3D Building Modelling
 - Intelligent Window Recognition
 - Intelligent Wall Merging Algorithm
 - o Create, Modify, Remove Indoor Objects
 - View and Modify Building and Floor Properties
 - Draw Walls and Configure the Wall Properties
 - o Draw Windows and Configure the Window Properties
 - Add Text on the Building Blueprints
 - View Building Structure in 3D
 - Building Scale and Area Computation
- Indoor Coverage Network Design
 - Add and Remove System
 - View and Modify System Properties
 - View and Modify System Device Properties
 - Cable Auto Planning
 - Mark Cables that directed through Walls
 - Import Building Blueprints
- Network Design Detection
 - Error Detection
 - Device Capability Checking
- System Evaluation
 - Best Signal Level Prediction
 - Path Loss Calculation
 - Best Server Prediction
 - Capacity Prediction
 - Hand-Offs Prediction
- Automatic Network Optimisation
- Database Editor
 - o Device/System/Material Properties Editing
 - Database Importing/Exporting
- Uplink and Downlink Signal and Noise Computation
- Project Management

- Create, Copy and Save
- View and Modify Project Properties
- Blueprints and Report Printout
 - Project Summary Report
 - Antenna System Report
 - Device Report
 - Cost/Budget Report
 - Summary of Device Locations and List of Penetration Points
 - Network Structure
 - Floors Blueprint

Using iBuildNet, users are able to get benefit from:

- ✓ A friendly network design procedure based on the platform has been designed by experts.
- ✓ Predicting the network performance after design, and compare the abilities in order to obtain the best solution; and reduce the network construction cost.
- ✓ After the evaluation and analysis of the current network, the network performance can be optimized based on parameters optimisation. It is even possible to optimise indoor coverage network parameters in order to optimise outdoor network performance.
- ✓ Analyze the influence on global networks after network technology reformed. For example, iBuildNet performs many network performance simulations on different scenarios and obtains the data in the macro level. Therefore, an upgrade evaluation can be obtained in order to suggest the upgrade plan from 2G networks to 3G networks and even LTE.
- ✓ Greatly reduce the amount of time need for network design, construction and evaluation.
- ✓ An intelligent report system which includes blueprint/report generation and print, saving reports in digit format. Users can obtain concrete, uniform, readable reports.
- ✓ The management of all information by the database. This saves time when the user is designing a new network based on previous data.
- ✓ The ability to obtain the overall network project construction budget after the definition of cost of devices. This can be obtained while the network design is being completed.

2 Indoor Radio Network Design and Deployment Overview

The purpose of indoor radio network design is to plan for uniformly good coverage and appropriate capacity; and meanwhile reduce the interference within the building or emitted to outdoor as little as possible. A diagram of traditional indoor radio network design is shown in Figure 2.

Ň

Figure 2. Traditional Indoor Radio Network Design Procedures

The buildings can be served by different types of signal distribution systems, such as passive/active Distributed Antenna System (DAS), optical fiber system and leaky cable system. A comparison of different types of distribution systems is shown in Table 1.

Distribution System Type	Advantages	Disadvantages
Passive DAS	Low cost, no need of power supply, easy to install, no noise rise	Difficult to plan, amplifiers may be required
Active DAS	Easy to plan, signal can be distributed uniformly	Restrict to device working frequency, hard to accom- modate multiple system, power supply is needed, noise rise issue, expensive to deploy
Fiber Optical	Low transmission loss, easy to plan and install, capable of accommodating multiple sys- tem	Remote unit need of power supply, expensive to deploy
Leaky Cable	Signal can be distributed un- iformly, capable of accom- modating multiple system	Expensive to deploy, hard to install, hard to transmit for long distance

Table 1. Comparison of Different Types of Distribution Systems

2.1 Capacity Dimensioning

The first phase when designing an indoor radio network is to estimate what the capacity is required. They can be estimated in the same way as when estimating outdoor networks. In business applications, the demands are normally higher. A margin for the data service is needed, as more than 90% of data services occurred indoors.

2.2 Signal Source Selection

The signal source can be selected based on the size and shape of the building and the outcome of capacity dimensioning. There are mainly four types of signal sources for indoor solutions: Base station source, Off-air source, Femtocell and Wi-Fi.

A system database is integrated with iBuildNet. Users are able to select system technology, frequency band and also the signal source type.

2.3 Radio Network Design

The engineers will have to measure the interference levels within the building, and then the maximum path loss for desired traffic profiles can be determined. An initial antenna location placement can be obtained based on the floor plan and a rough path loss prediction. The initial antenna location will be verified according to real path loss measurement. The real path loss measurement is a time and labor consuming task. Network surveyors have to deploy signal

generator in the building in accordance with the initial antenna location plan, and measure the path loss using RF measurement tools.

With the feedbacks from the network surveyors, the network planner can move the locations of antennas. In some cases, more antennas may be required to add on to the initial plan or vice verse.

Once the locations of the antennas are verified, the network planner will connect the antennas with the signal source using suitable devices and appropriate cable routine. It will be easier to design active DAS, as the transmit power can be adjusted using active devices. But the passive DAS will be complicated to plan.

Note that, some indoor systems have to be installed before the building interior construction is completed. Since the indoor radio propagation environment is very complicated, and the building interior will seriously affect the radio propagation. In such a case, it will not be possible to obtain an accurate path loss measurement result. Moreover, it will not be easy for the indoor network planner to connect the antenna with signal source using suitable devices and appropriate cable routine. Therefore, it is critical for the network operators to have a suite of tools which can model the buildings meticulously and integrate with an accurate propagation model that is able to take consideration of these detailed building information to obtain the radio propagation result of an indoor radio network plan. An integrated planning module, which is able to automatically choose the intermediate devices and cable route, is in high demanded.

2.4 Installation

Once the radio network design is approved, the network design overviews of each floor and the network system topology have to be provided for network installation engineers to deploy the network.

2.5 Test

A network test will be carried out similar to the measurement of path loss which was done during radio network design phase. But more Key Performance Indicators (KPIs) have to be monitored. If the KPIs achieve the target, the whole project can be handed over, otherwise, the network has to be re-designed and re-tested.

3 iBuildNet Working Environment

The working environment of iBuildNet integrates with a set of tools and functions that allow users to create and design any indoor radio network.

Figure 3. Main User Interface

As shown in Figure 3:

- The **Menu** is located at the top of this screen.
- The **Toolbar** is located immediately under the Menu.
- The Workspace is located below the Tool Bar. The users can edit objects in this area.
- The Task Status Bar is located under the workspace.
- The **Project Management Windows** including Project Explorer (also called as Project Structure Tree), Graphic Project Property Window, Network Systems Explorer Window and Radio Propagation Prediction Window. All these windows can be opened, closed or docked. In Figure 3, these four windows are docked around workspace. Users are able to customize the location of each window upon user preference.

3.1 The Menu

There are seven categories in the Menu as shown in Figure 4.

File sub-menu, as displayed in Figure 5, can be used for the following features:

- Create a new Project (or Building and Floor within a current project).
- Open an existing project.
- Close a project.
- Save a project.
- Save current project to another location.
- Print to picture
- Print Preview
- Print
- View/Open recent projects
- Exit iBuildNet

Figure 5. File Sub-Menu

Edit sub-menu, as displayed in Figure 6, can be used for the following features.

- Undo previous operation.
- Redo previous operation.
- Cut an object.
- Copy an object.

- Paste an object.
- Delete an object.
- Replace selected building material.
- Select all objects.

Figure 6. Edit Sub-Menu

View sub-menu, as displayed in Figure 7, can be used for the following features.

- Show Property Window.
- Show Project Explorer.
- Show 3D View.
- Show Tasks status bar.
- Show Network Systems Window.
- Show SPE Viewer.
- Zoom In/Out.

Figure 7. View Sub-Menu

Insert sub-menu, as displayed in Figure 8, can be used for the following features.

- Insert text into current project/view.
- Insert picture into current project/view.

• Import DXF file into current project.

Figure 8. Insert Sub-Menu

Tools sub-menu, as displayed in Figure 9, can be used for the following features.

- Manage Material Database
- Manage System Database
- Manage Backgrounds Images
- Manage Device Database
- Customize Options

	Manage Material DB	
	Manage System DB	
	Manage Backgrounds	
C.	Device DB Manager	
	Options	

Figure 9. Tools Sub-Menu

Report sub-menu, as displayed in Figure 10, can be used for the following features.

- View and Edit Equipment List Report
- View and Edit Cost Details Report
- View and Edit Cable Routing Report
- View and Edit Layout Plan Report

Figure 10. Report Sub-Menu

Help sub-menu, as displayed in Figure 11, can be used for the following features.

- View User Manual
- Check iBuildNet information

User Manual	F1
About	

Figure 11. Help Sub-Menu

3.2 The Toolbar

There are several shortcuts designed on the toolbar as displayed in Figure 12. These shortcuts enable the user to create and design projects more conveniently.

💉 😂 🛃 🗈 😅 🗼 ங 🛝 🗡 성 🗠 🎬 🔛 💆 📓 🔹 100% 💿 🔍 🍳 🍳 🍳 🛃 🗟 🖬 🚺 🚺
Figure 12. The Toolbar
• Create a new project.
• Popen an existing project.
• Save current project.
• Create new building.
• Create new floor.
• 🐱 Cut selected object.
• Copy selected object.
• Paste selected object.
• Delete selected object.
• Undo previous operation.
• Redo previous operation.
• Shown Property Window.
• 🗾 Show Project Explorer.
• Show 3D View.
• Show Network Systems Window.
• Show Performance Target Window (SPE).
• Show Task Window.
• Zoom In/Out with a specific percentage.

• 🔍 Zoom In.

- Q Zoom Out.
- 🔍 Zoom to Region.
- 🗳 Print.
- 🗳 Print Preview.
- 📴 View Equipment List Report.
- **View Cost Details Report.**
- **Wiew Cable Routine Report.**
- 🗳 View Layout Plan Report.
- Switch On/Off Line Adsorption function.
- Switch On/Off End Point Adsorption function.
- 🔷 Display Floor Anchor.
- **E** Stop Current Task.
- 🔳 Stop All Tasks.

4 Building Structure Modeling

Building Structure Modelling (BSM) is the process of modelling a building by floors. It is one of the most important procedures while planning or optimising an indoor radio network using iBuildNet. iBuildNet integrates with Ranplan's own 3D ray tracing/launching hybrid propagation module (full introduction about this module will be given in following chapters). A detailed 3D building is the basis for accurate calculation of radio propagation prediction. An example of a 3D building modelled in iBuildNet is shown in Figure 13.

Figure 13. 3D Building Modelled in iBuildNet

First, a new building has to be created. Basic information of this building should be input. After that, each floor is modelled and assigned to the building. iBuildNet will enable users to copy a designated floor within a building or even inter-buildings. It can also create multiple floors in batch and model each floor, which includes drawing objects of the building such as walls, windows, doors etc.

4.1 Import DXF File

iBuildNet enables users to draw floor designs by importing from AutoCAD dxf files. This is one of the most convenient methods of modelling floor designs.

Figure 14. Import AutoCAD dxf file

4.1.1 Configure importing parameters

After the dxf file is opened, the parameters for importing a dxf file can be configured in "Import DXF" dialog as shown in Figure 15.

Figure 15. Import dxf Dialog

4.1.2 Configure origin point

The origin point has to be defined, either by default or customization. We recommend users to define the origin point very carefully, in particularly when designing in large dimensional buildings, i.e. a building contains several floors. Users have to ensure the origin points on each floor are exactly matched, if the floor designs were not copied from other floors. Otherwise, the buildings may suffer from offsets of each floor on the vertical plane.

4.1.3 Configure scaling ratio

The scaling ratio has to be configured. It can be defined in terms of the radio between the actual building and the building on the dxf file. Alternatively, user can use the pair of green anchors to custom the scaling ratio. The actual distance between the two green anchors can be fed into iBuildNet; as a result, the scaling ratio can be determined.

4.1.4 Filter data layers

Most dxf files are designed with several layers on them. Some of the layers are not relevant to indoor radio network planning and optimization. In other words, they will disturb network designers while they are designing indoor networks. iBuildNet will help users to filter data layers and convert relevant data layers into a 3D building.

As shown in Figure 16, user can select a layer as a wall to be converted into 3D building or keep it as background image. Users are free to select/unselect any layer that can be recognized by iBuildNet.

In a large number of cases, several floors will be drawn on one single dxf file. Therefore, only a part of the dxf file will be used to be imported into a specific floor. User can use the "Select region" button, which is displayed in Figure 16, to select a part of the dxf file.

The image will be refreshed automatically if the "Auto Refresh" checkbox is ticked. Otherwise, users can click on the "Refresh" button to refresh the preview.

As soon as the layers to be imported such as wall and background are determined, the background image for this floor is generated. A default background name will be assigned to the background if no particular name was typed in the box as shown in Figure 16.

Figure 16. Filter Data Layer

4.2 Free Style Drawing

This method does not depend on any reference. The users can use the drawing tools, as indicated in Figure 17, to draw objects based on a given scale.

- *: This tool can be used to select objects.
- ²²: This tool can be used to handle objects.
- his tool can be used to move objects.
- This tool can be used to draw vertical walls.
- B: This tool can be used to draw doors.
- This tool can be used to draw windows.
- 🛉 : This tool can be used to draw Horizontal Walls.
- This tool can be used to draw doors under normal view.
- P: This tool can be used to draw windows under normal view.

- This tool can be used to draw rectangle rooms.
- ^{\$\lambda\$}: This tool can be used to draw roofs.
- ⁴: This tool can be used to draw grounds.
- $\overset{\textcircled{}}{\sim}$: This option will allow users to return to overview.
- 🖙 : This option will allow users to enter normal view.

Figure 17. Drawing Tools

4.3 Drawing based on Background Pictures

This method allows the users to draw objects based on a background image. The users need to import a background image. Based on this background image, the drawing can be done similar to a free style drawing. However, background images are not only be used as a reference while drawing a floor design. They can also be used while refining a floor design after being imported from a dxf file or to check the constraints of the building while designing an indoor radio system.

4.3.1 Import background image

To import the background images of a particular floor, users have to enter the design view of the floor by a click on the name of the floor that listed in the project structure tree. Then, right click on the work space, and select "Background Image", as shown in Figure 18.

🔏 Ranplan iBuildNet V1.0.0.152 - C:\Users\PWang\Des	top\iBuildNet Public\Project2\Project2.ibp *	
File Edit View Insert Tools Report He	p	
💉 💕 🖬 🗊 😅 % 🗈 🖺 🗡 🤊 🥲 🚰	🗄 🙇 📓 虜 100% 🔷 🗨 🔍 🍳 🔍 🦂	🔍 R B R R 🔨 🔨 🚽
B1_F1	▼ ×	3D View 👻 🕂 🗙
K O K - B 🗆 🏟 🖉 🗖 🎜 🎸	わ R 🎬	Display Setting
	Import DXF	××
2	Switch Normal View Return to overview Select all walls	
	Same Material ground image.	
	Replace Material	ject Explorer 🗸 🖵 🗙
	Background Image	Project2'Project (Design Company)
	Tool Property	E -
	Undo Ctrl+Z	⊟ B1 F5
C	Redo Ctrl+Y	B1_F4
	Copy Ctrl+C	B1_F3 B1_F2
6	Cut Ctrl+X	
l C	Paste Ctrl+V	
>	Delete Del	
	Property	
100 cm	Building C Device	🔝 Projec 🔀 Netw 🚺 Predic
Tasks		
0 items are selected.	0.00, 0.00	Meters ,;;

Figure 18. Import Background Image

Figure 19. Background Image Import Dialog

Similar to importing dxf file to a floor, layers of the background can be selected as shown in Figure 19. The preview will be updated automatically if the "Auto refresh preview" option is turned on. An example of imported background image is shown in Figure 20.

Figure 20. Import Background Image

5 Database Management

There are three individual databases integrated in iBuildNet.

- Device Database
- Material Database
- System Database

5.1 Device Database

A number of general devices are stored in the device database. Users can customize this database by adding, deleting, copying or editing any device. The devices are sorted in terms of devices types. For each device type, the devices are classified by manufactures. Figure 21 shows an example of an antenna saved in device database. All the relevant parameters are also saved, which can be loaded by the propagation model.

👼 Device DB Management V1.0.0.0 - C:\Users\PWang\Desktop\R331\Data\DeviceDB.db						
<u>F</u> ile <u>E</u> dit <u>H</u> elp			Х			
🗋 🛃 😂 📕 👗 ங 🏝 🗙 👘						
Antenna	Base Information Specifica	tion Port Link Pattem				
ANTO_8063_17103	Type:	Antenna				
ANTO_8243_17103	Manufacturer:	Ranplan	- []			
ANTO-8003 ANTYA_800612	Model:	ANTD_7005_17107				
	Creator	Ranplan				
	Comments:	Directional Indoor Antenna, 700–960 MHz 5 dBi Gain a Gain.	and 1710–2700 MHz 7 dBi			
	Reset All A	Apply All Rese	t Apply			
			Cnt 98;			

Figure 21. Example of an antenna saved in device database

5.2 Material Database

The building material plays a very important role in indoor radio propagation prediction. Different materials will have a serious affect on transmissions, reflections and diffractions of radio waves. Since iBuildNet integrates a hybrid ray-tracing/launching propagation model. It is critical to make sure the materials of the building in which the indoor radio network will be deployed are defined as the same as the ones that will be used. iBuildNet provides a general material database, which includes basic materials for buildings. In the event that the materials used in a building do not exist in the material database. The users can add new materials or modify current ones to adapt to those needed. A screenshot of material database manager is shown in Figure 22.

🔒 Mat	terial DB Management V1.0.0.0		1.0	The law is	- 3-4		
1	Add Edit Delete						Import Advance
	Name	Thickness (cm)	Frequency (MHz)	Transmission (dB)	Reflection (dB)	Horizontal Diffraction (dB)	Vertical Diffraction (dB)
	Outdoor Concrete Walls	10	900	10	9	5	5
	Ceiling (Outdoor)	10	3500	30	15	5	5
	Window (Glass, Outdoor)	10	900	8	17	5	5
	Doors (Metal, Fire-Doors)	10	900	8	3	7	9
	Wall (Wood)	12	900	4	3	5	8
	Doors (Wood)	10	900	3	16	5	5
	Windows (Indoor, above doors)	10	900	6	5	7	5
	Walls (Reinforced Concrete)	10	900	12	4	5	5
	Default Blackboard	6	1800	20	2	9	7
	Default Walls (Metal)	3	1800	16	2	5	5
	Default Doors (Glass)	10	1800	13	17	5	5
	Ceiling (Concrete)	24	1800	12	5	5	5
	Ceiling (Wood)	10	1800	15	15	5	5
	Default Wall (Outdoor)	10	1800	12	14	5	5
	Default Wall (Brick)	12	1800	15	12	5	8
	Ranplan Ceiling (Concrete)	24	1800	12	5	5	5
	Ranplan Wall (Brick)	12	1800	16	12	5	5
	Ranplan Ceiling (Wood)	10	1800	15	15	7	6
	Ranplan Wall (Outdoor)	10	1000	14	14	5	5
	Ranplan Window (Glass, Outdoor)	10	1000	13	17	5	6
	Ranplan Doors (Metal, Fire-Doors)	10	1000	13	3	5	5
	Ranplan Wall (Wood)	12	1000	11	15	8	6
4	Ranplan Doors (Wood)	10	1000	9	16	5	5
	OK Cancel						

Figure 22. Material Database

5.3 System Database

The system database allows users to be able to select appropriate systems easier. It saves all the relevant information of a system, such as "Region", "Technology", "Frequency Band" and even the channel numbers for a specific system. Like other databases that can be integrated with this tool, system database can also be customized by users. New systems can be added into this database, and all the saved systems can be edited.

	Region	Alias	Technology	Band	Bandwidth	Offset	Downlink Down	Downlink Up	Uplink Down	Uplink Up
	China	GSM900	P-GSM			0.2		960		
	China	GSM1800	DCS-1800	1800	45	0.2	1805	1850	1710	1755
	China	TDD1880	TD-SCDMA	1880	40	1.6	1880	1920	1880	1920
	China	TDD2020	TD-SCDMA	2020	5	1.6	2020	2025	2020	2025
	China	WiFi	802.11g	2400	94	25	2401	2495	2401	2495
*										
•	Number 1	Downlink Frequence 935.2	y Frequ 890.2	ency	How-Te	o: item: Input data	Chanr	el numbe	r and	
	Number	Frequenc	y Frequ	ency	How-Te	D:				
Þ	Number 1 2	Downlink Frequence 935.2 935.4	y Frequ 890.2 890.4	(ency	How-To	o: item: Input d at	Chanr	nel numbe	r and	
•	I 2 3	Downlink Frequence 935.2 935.4 935.6	y Uplinl 890.2 890.4 890.6	ency	How-To	o: item: Input date	Chanr their c	nel numbe correspond	r and ling	
•	Number 1 2 3 4	Downlink Frequence 935.2 935.4 935.6 935.8	y Frequ 890.2 890.4 890.6 890.8	ency	How-Tu 1. Add 3. Rem	o: item: Input date ove item: Selec	Chanr their c freque	nel numbe corresponc ency point	r and ling s.	
•	Charmer Number 1 2 3 4 5	Downlink Frequenc 935.2 935.4 935.6 935.8 935.8 936.0	y Uplinl 890.2 890.4 890.6 890.8 890.8 890.8		How-To 1. Add 3. Rem All chai	o: item: Input data ove item: Selec	Chanr their c freque	nel numbe correspond ency point	r and ling s.	
•	Number 1 2 3 4 5 6 6	Downlink Frequenc 935.2 935.4 935.6 935.8 936.0 936.0 936.2	y Uplini Frequ 890.2 890.4 890.6 890.8 891.0 891.2		How-Tr 1. Add 3. Rem All chai	o: item: Input data ove item: Selec nges will be imm	Chanr their c freque	nel numbe correspond ency point	r and ling s.	
•	Image: Character of the second seco	Downlink Frequenc 935.2 935.4 935.6 935.8 936.0 936.2 936.2 936.4	y Frequ 890.2 890.4 890.6 890.8 890.8 891.0 891.2 891.4		How-Tr 1. Add 3. Rem All char	o: item: Input data ove item: Select nges will be imm	Chanr their c freque	nel numbe correspond ency point	r and ling s.	
•	Image: Character of the second seco	Downlink Frequenc 935.2 935.4 935.6 935.8 936.0 936.2 936.4 936.4 936.6	y Uplini Frequ 890.2 890.4 890.6 890.8 891.0 891.2 891.4 891.6		How-Tri Add	o; item: Input det ove item: Selec	Chanr their of freque	nel numbe correspond ency point	r and ling s.	
	Image: Charmen of the second	 Downlink Frequence 935.2 935.4 935.6 935.8 936.0 936.2 936.4 936.6 936.8 	y Uplini Frequ 890.2 890.4 890.6 890.8 891.0 891.2 891.4 891.6 891.8	c ency	How-Tri Add	o: item: Input date ove item: Selec nges will be imm	Chanr their c freque	nel numbe correspond ency point	r and ling s.	
	I I 2 3 4 5 6 7 8 9 10 1	 Downlink Frequence 935.2 935.4 935.6 935.8 936.0 936.2 936.4 936.6 936.8 937.0 	y Uplini Frequ 890.2 890.4 890.6 890.8 891.0 891.2 891.4 891.6 891.8 891.8 891.8		How-Tr 1. Add 3. Rem All char	o: item: Input dat ove item: Selec	Chanr their c freque	nel numbe correspond ency point	r and ling s.	

Figure 23 System Database

Add System		X
System color: Select	Operator:	These two fields will be used at report and other places that need to distinguish systems.
Region/Country: China	•	The system infomation specifics the type
Technology: P-GS		Select technology for a system
Band: DCS- TD-S0 802.1	1800 CDMA 1g	
Source infomation]
Type: Base	station source 💌	The source infomation specifics the way the signal is provided and site type.
Nb. Channels:	Select	
TX Power: 0	dBm	The power and nosie of this source transmits. Please note that this power
Noise figure: 0	dB	does not mean the site transmits.
Device: Not ne	ed	Select a device if this source is a femtocell source, WiFi source or off-air source. Just click the rectangle to select device.
Donor Site	e Details	
	Ok	Cancel

Figure 24. Select System Technology

6 Device Layout Design

Device layout design is most important part of designing an indoor radio network. The real network planning and optimization starts from here. It is the process of determine the model, configuration and location of network devices, and connect these devices using appropriate cables.

6.1 Network System Design (NSD)

Network System Design, in short NSD, is used for constructing and designing network system. By adding different kinds of network devices to the design view, and connecting them together with different links, the logical structure and relation can be demonstrated.

6.1.1 Network System Design Toolbar

The NSD toolbar contains the following tools:

- Selection tool
- Hand tool
- [•] : Insert Cable
- Ÿ : Insert Antenna
- - Insert Splitter
- Insert Attenuator
- : Insert BDA
- E : Insert Fiber BDA
- 🔨 : Insert Fiber BDA Hub
- Ensert Fiber Repeater
- ⁷ : Insert Filter
- 😳 : Insert Device Power
- E : Insert Repeater
- Ensert Signal Source

- 🕑 : Insert Drill Hole (Between Floors)
- Since the set of the
- ¹ : Make cable be a right angled line
- Calle be a free style line
- T : Insert Text
- 🔤: Insert Picture
- • Rotate Left
- 📑 : Rotate Right
- 🧉 : Device Mirror

6.1.2 Add Devices

Users can add devices using the shortcuts listed on the NSD toolbar. The device database will be open when click on the buttons to add devices.

For instance, if an antenna is required to place into a building:

1. Click on the antenna shortcut.

Figure 25. Start to Add an Antenna

2. "Select Device Form" will be open to choose an antenna. The antennas (also other devices) are classified by manufactures. The default database only contains the general devices created by Ranplan.

Select Device Form		
⊟- Antenna	Base Information Specification Port Link Pattern	
Ranplan Click here to expand the antenna list	Type: Unknown	
	OK Ca	incel

Figure 26. Select Device

Select Device Form	
⊡ Aritenna ⊡ Ranplan — ANTD_8006_17109 — ANTD_8063_17103 — ANTD_7005_17107 — ANTO-8243_17103 — ANTO-8003 — ANTYA_800612 — ANTD_8245	Base Information Specification Port Link Pattern Type: Antenna Manufacturer: Ranplan Choose an an- tenna from device database or Antenna. 806-960 MHz 1.5 dBi Gain and 1710-2700
	Comments: Click OK to confirm. OK Cancel

Figure 27. Choose an Antenna

An antenna icon will be displayed to instead of the mouse cursor after the antenna is selected and confirmed. Users are now able to place the antenna to a desired location, as shown in Figure 28.

Figure 28. Place an Antenna

6.1.3 Device Properties

There are two types of properties of a device: Device Property and Device Graphic Property. The device property can only be edited in the device database, but it can be viewed in network design views. The device graphic property can be viewed and edited (mainly the height of a device) in Graphic Object Property Window.

6.1.3.1 View Device Property

In order to view device property, the target device has to be selected by double clicking on it. Device property window will be displayed. For example, for an antenna device property window shows below:

🔏 Ranplan i	iBuildNet V1.0.0.282	- C:\Users\PWa	ang\Desktop\Proje	ect\Axis Demo.ibp			
File Edit	View Insert I	ools Report 🖺 🗙 ທິ (*	нер	🍙 🗾 200%	•େତ୍ତ୍	🛃 🛕 📭 📭	
B1_F9	Select Device Form						- U × U × U ×
N (1)	Base Information S	pecification Port	Link Pattern	1			
	Туре:	Antenna			v		
	Manufacturer:	Ranplan					12, Y=-3.16}
	Model:	ANTO-8003				\sim	
	Creator	Ranplan					
		Omnidirectional I	ndoor Antenna, 800-2	2500 MHz 3 dBi Gain.			. 🚰 Graph
							→ 中 ×
<u> </u>							agation Models
	Comments:						
50 cm							
Tasks							→ ₽ ×
ID Name						ок с	Cancel
P				0.00, 0.00			Meters

Figure 29. View Device Property

6.1.3.2 View and Edit Device Graphic Property

The device graphic property can be viewed and edited in the graphic object property window. This window can be opened by right clicking on a device, then choose "Show Property", as shown in Figure 30.

Figure 30. Open Graphic Object Property Window

6.1.4 Delete Devices

In order to delete a device, users have to select the target device, right click on it and choose "delete". Figure 31 shows an example of deleting an antenna.

Figure 31. Delete a Device

6.1.4.1 Send Devices

Users can send target device to specified floor in network system design interface. The target device has to be selected using select tool, and right click on the device. Users now are able to select "Send to" from the right click menu, and then choose the building and floors that the device will be sent to. Figure 32 shows an example of sending a splitter to another floor.

Figure 32. Send Device

6.1.4.2 Connect Device

Appropriate devices can be connected using network cables. Click on the "Cable" shortcut from device toolbar. Connect the devices using cables whose properties are compatible with both of the two devices. Figure 33 shows an example of choosing a cable. The instruction of connecting devices is shown in Figure 34 and Figure 35.

Select Device Form		J×
Cable → Ranplan CAB_38 CAB_58 CAB_14 CAB_14SF	Base Information Specification Port Link Type: Cable Manufacturer: Ranplan Maddl. CAB 125	
CAB_78SF CAB_38SF <mark>CAB_12F</mark> CAB_78F CAB_FIB	Creator Ranplan 1/2" Flexible Foam Dielectric Coaxial Cable	
	Comments:	

Figure 33. Choosing Cable

Figure 34. Connect Devices I

Figure 35. Connect Devices II

If the port is already being used by another cable, a message will be pop out as shown in Figure 36.

Figure 36. Port has been used

6.1.4.3 Cable Routing

There are three cable routing style: Straight Line, Right Angled Line and Free Style Line, as shown in Figure 37.

Figure 37. Cable Routing Style

6.1.5 Auto Layout

Users can use auto layout function to organize devices in NSD view. There are two types of auto layout style (Free Style and Floor Style) can be used as shown in Figure 38.

Ranplan iBuildNet V1.0.0.331 - C:\	Users\PWang\Desktop\ZhongRunTe	sting(145)\CMCC SDZR Plan 2.ibp	
File Edit View Insert To	ols Report Help		
💉 💕 🖌 💣 🚟 👗 🖻 🛍	X 🔊 (* 😭 🗄 🖪 🖉 🗐	🗾 50% - @ @ @	
Network System Design 3D	View V B1 F5 V B1 F2 V B1 F1 V	R1 F3 / R1 F4 / R1 F6 / R1 F7	→ Prediction → 4 ×
	<u>እ ቬ አ </u>	≿_:: ເມີ.: 2 T_ 33 โΩ - Ω] ເຮັ	Propagation Models
			TD-SCDMA_1880
	Show Property	81_56_AH151	
	Select All Ctrl+A	N_N_Action	
	X Delete Del	∞	
15	Delete All	BY_FR_Arr122	
	Pring Forward		
	Bring Back	125 BI_TS_ACTION	
	View Slibing	SU_FR_Aref 30	
	UpDo Ctrl+7		
60	ReDo Ctrl+Y	54_56_Acris7	
	Refrech		
	Send to		
	Surtem Langend	Bri_FB_Aret 30	
	Cable Legend		
BI_F8_Spri10	Project Info	120 BI_F8_Act129	
	Virtual Building		
	Default Device Height		Projec 💽 Netw 🔟 Predic
Tasks ID Name	Auto Layout 🔹 🕨	Free Style	- 4 ×
is name	Replace Device	Floor Style	
	Signal Show		
L L	Resort Name		
		0.00, 0.00	Meters

Figure 38. Auto Layout

6.2 Floor Layout Design (FLD)

6.2.1 Send Devices from FLD

As stated in previous sections, users can send one device to one floor (FLD) from NSD. This operation can also be done from FLD as well. Figure 39 shows an example of sending device to other floors from FLD.

Figure 39. Send Device to Other Floors from FLD

6.2.2 Design Floor Layout

For the device that adds in floor layout design, only the category icon is used to represent the device. All the devices that add to FLD will be added to the NSD accordingly, the operation of adding devices in FLD is similar to the operation in NSD. The detailed device operation in FLD can be referred to in NSD.

7 System Performance Evaluation (SPE) and 3D Display

7.1 SPE Introduction

System performance evaluation (SPE) is a special module of iBuildNet. SPE algorithm is based on full 3D Ray Tracing and Ray Launching technique. It is able to provide accurate performance evaluation in a short period of time. It includes path loss calculation, signal strength calculation and best cell calculation.

SPE is one of the key evaluation indexes in indoor wireless network planning and optimization. The result of planning and optimization relies heavily on the performance of SPE. SPE has to achieve a relatively accurate prediction in a short period of time. RRPS (Ranplan Radiowave Propagation Simulations) is also integrated in Ranplan iBuildNet. [4] RRPS is a powerful 3D ray tracing model engine. 3D multi-path data and path loss matrix can be obtained within a short period of time. Furthermore, the RRPS engine also contains many sophisticated empirical model and semi-empirical model, such as Multi-Wall Model. RRPS is able to accomplish a full 3D signal calculation of one antenna within several seconds, with an accuracy rate of around 7 dB. Ranplan iBuildNet also has one built-in propagation model which was developed by our company. This will greatly improve work efficiency and save costs.

7.2 Configure Propagation Models

As stated in previous chapters, RRPS is integrated in iBuildNet, therefore several propagation models can be used for system performance evaluation.

Users are able to configure the propagation model to meet different user requirements. In order to configure the propagation model, users should click on the "Propagation Models" button on SPE viewer window (Press F9 to open SPE viewer window). The "Ranplan Radiowave Propagation Engine" configuration window will pop up, as shown in Figure 40. The propagation model configuration window contains 6 tabs. Relevant parameters can be configured on them.

🖪 Ranplan Radiowave Propagation Engine - Configuration [RELEASE]	. 🗆 🗙
General Scenario Network Emitter Miscellaneous Computation	
Name	
Ranplan Radiowave Propagation Simulator Module	
Version Major	
2	
Version Minor	
597	
Area Type	
C_AREA_NOT_DEFINED = 0;	
Upper Limit of Path Loss in dB	
165.00000	
Lower Limit of Path Loss in dB	
0.00000	
Global Adjustment	
0.00000	
DLL Path	
C:\Users\PWang\Desktop\R282\RPMLib.dll	
Language File	
Browse	pply
10 Unity: 1.06 - Fasuvivi: 4.97 - Timestamp: 11/02/2011 11:31:08 DLL: 2.597.0.105	
OK Cancel Reset Apply	

Figure 40. Propagation Model Configuration Window

7.2.1 General Parameters

The "General" tab, as shown in Figure 40, contains the following information:

- Name: Name of this module.
- Version Major: This number will only be changed if new core algorithm is applied and tested.
- Version Minor: As this module keeps updating. The minor version keeps changing accordingly.
- Area Type: This is used to define the radio propagation scenario, such as indoor, dense urban, urban etc. Users do not need to configure this parameter if the project is only involved in indoor radio network design. It is set to indoor scenario by default.

- Upper Limit of Path Loss in dB: Maximum path loss threshold that configured for simulation.
- Lower Limit of Path Loss in dB: Minimum controlled path loss threshold that configured for simulation
- Global Adjustment: The value to shift for all predictions after simulation.
- Language File: Specifies a language for this propagation model configuration window.

7.2.2 Scenario Parameters

The "Scenario" tab, as shown in Figure 41, contains the following information:

🔜 Ranplan Radiowave Propagation Engine - Configuration [RELEASE]	<u>_ </u>
General Scenario Network Emitter Miscellaneous Computation	
Discrete Database (*.vc)	
	Browse
Path Loss (*.ecb)	
	Browse
Scale	
1.00000	
Distance Coefficient (LOS)	
20.00000	
Path Loss Constant	
32.44000	
Distance Coefficient (NLOS)	
20.00000	
Frequency Coefficient	
20.00000	
Max Delay (ns)	
1.000E+016	
Clutter Index File (*.txt)	
	Browse
DEM Index File (*.txt)	
	Browse
OK Cancel Reset Apply	

Figure 41. Propagation Model Configuration Window - Scenario Tab

- Discrete Database (*.vc): The file path for storing the building data. It will be automatically set in iBuildNet during runtime.
- Path Loss (*.ecb): The file path for storing the path loss (automatically set in iBuild-Net during runtime).
- Scale: e.g. set the scale to 1000 if the base unit used is km.
- Distance Coefficient (LOS): Line-of-sight path loss coefficient.
- Path Loss Constant: i.e. $20 * \log 10(f) + 20 * \log 10(d) + 32.45$.
- Distance Coefficient (NLOS): None-line-of-sight path loss coefficient.
- Frequency Coefficient: i.e. $20 * \log 10(f) + 20 * \log 10(d) + 32.45$
- Max Delay (ns): Whether each ray is limited to have max delay (ns).
- Filter: Filter the result after simulation (average surround 1 pixel).
- Clutter Index File (*.txt): Used in outdoor simulation for storing clutter data.
- DEM Index File (*.txt): Used in outdoor simulation for storing DEM data.

7.2.3 Network Parameters

The "Network" tab, as shown in Figure 42, contains the following information:

💶 Ranplan Radiowave Propagation Engine - Configuration [RELEASE]	×
General Scenario Network Emitter Miscellaneous Computation	
Reflection Loss (dB)	
5.00000	
Transmission Loss (dB)	
11.00000	
Diffraction Loss (dB)	
7.00000	
Roof-top Diffraction Loss (dB)	
7.00000	
Maximum Reflection	
4	J
Maximum Transmission	
5	J
Maximum Diffraction	
2	J
Maximum Roof-top Diffraction	
3	J
Maximum Iteration	
10	J
OK Cancel Reset Apply	

Figure 42. Propagation Model Configuration Window - Network Tab

- Reflection Loss (dB): Default reflection loss if material is not available.
- Transmission Loss (dB): Default transmission loss if material is not available.
- Diffraction Loss (dB): Default diffraction loss if material is not available.
- Roof-top-diffraction Loss (dB): Default vertical diffraction loss if material is not available
- Maximum Reflection: The maximum reflection each ray can travel.
- Maximum Transmission: The maximum transmission each ray can travel.
- Maximum Diffraction: The maximum diffraction each ray can travel.
- Maximum Roof-top-Diffraction: The maximum vertical diffraction each ray can travel.
- Maximum Iteration: The maximum combination (reflection diffraction etc) that each ray can travel.

7.2.4 Emitter Parameters

The "Emitter" tab, as shown in Figure 43, contains the following information:

🔜 Ranplan Radiowave Propagation Engine - Configuration [RELEASE]	x
General Scenario Network Emitter Miscellaneous Computation	
Cubic Position X	
-1	
Cubic Position Y	
-1	
Cubic Position Z	
-1	
Frequency (GHz)	
0.00000	
Bearing	
0.00000	
M-Tilt	
0.00000	
E-Tilt	
0.00000	
Power (dBm)	
0.00000	
Force No Antenna Pattern	
OK Cancel Reset Apply	

Figure 43. Propagation Model Configuration Window - Emitter Tab

- Force No Antenna Pattern: No antenna pattern will be used in calculation.
- All others are read-only fields that are intended for displaying information about current emitter being computed.

7.2.5 Miscellaneous Parameters

The "Miscellaneous" tab, as shown in Figure 44, contains the following information:

🔜 Ranplan Radiowave Propagation Engine - Configuration [RELEASE]	
General Scenario Network Emitter Miscellaneous Computation	
Original Map Lowest-X	
0.00000	
Original Map Lowest-Y	
0.00000	
Original Map Lowest-Z	
0.00000	
Post VC	
0	
Post_PL	
0.00000	
Image Scale	
1.00000	
Multithreading	
7	•
Thread Priority	
3 = Normal	•
Paths	
	Browse
OK Cancel Reset Apply	

Figure 44. Propagation Model Configuration Window - Miscellaneous Tab

- Original Map Lowest-X: Stores the original map coordinate X.
- Original Map Lowest-Y: Stores the original map coordinate Y.
- Original Map Lowest-Z: Stores the original map coordinate Z.
- Post-VC: Cubic Flag to control after simulation.
- Post-PL: Set the Post-VC bit to pre-defined path loss after simulation.
- Image Scale: The image scale to generate pictures.
- Multithreading: The number of threads to be used in simulation.
- Thread Priority: Thread priority of the threads.
- Path: Multipath file location.

7.3 System Performance Calculation

SPE is the one of most important modules of Ranplan iBuildNet. The operations of SPE include:

- New performance index evaluation
- Refresh existing performance index evaluation
- Re-evaluate performance index
- Deleting existing performance index
- View performance index evaluation
- 3D view display
- Print

7.3.1 Create New Performance Index Evaluation

Every system is able to create a number of SPE indexes. In order to create, from the SPE window (can be displayed by pressing F9) right click on a system and then click on "New", see Figure 45. Different systems have to be evaluated separately.

Figure 45. Create a New Evaluation

A pop-up window will be displayed, from where users can choose different prediction type, such as Path Loss, Signal Level, Best Signal Level and Best Server. As the propagation model setting may be reused for other projects. The settings can be saved for future use, as shown in Figure 46.

Select Predicti	ion Type	×
Туре:	PathLoss SignalLevel Best SignalLevel Best Server	OK Cancel
Template:	* Build-in Template Best Signal Level 0.pdt(C:\Users\PWang\Dc	
		Delete
		Set Default
	* Default template.	1.

Figure 46. Choose a Prediction Type

The corresponding prediction will be created after a calculation has been selected. The configuration dialog for this prediction will be displayed as shown in Figure 47.

Configurate Prediction - BestSignalLevel		
General Display		
Name: Best Signal Level 0 Resolution: 0.2 Comment:	Antennas Filter by Field: (none) ■ B1_F16_Ant317 ■ B1_F16_Ant316 ■ B1_F16_Ant315 ■ B1_F16_Ant315 ■ B1_F16_Ant313 ■ B1_F16_Ant312 ■ B1_F16_Ant311 ■ B1_F16_Ant310 ■ B1_F16_Ant309 ■ B1_F16_Ant307	
Save as a template.	Cancel	

Figure 47. Configure Prediction

7.3.1.1 Configure General Parameters

There are two configuration tabs, General and Display, on this dialog window. From the General tab, users are able to define the name of the current prediction, the resolution of the prediction, record a comment and choose the antennas to be active in this prediction. The resolution is a very important parameter to a prediction. It will decide how accurate the prediction is. The unit of this parameter is the same as the unit of the building, such as Metre or Feet. The antennas can be chosen one by one or use the select all checkbox that is provided on the window. Moreover, users can use the filter to choose antennas, such as choose a floor, a building and so on. See Figure 48.

Configurate Prediction - BestSignalLevel		
Name: Best Signal Level 0 Resolution: 0.2 Comment: Tick here if current parameter will be used as a template in the future.	Antennas Filter by Field: Building Name ✓ B1_F16_An ✓ B1_F16_Ant 309 ✓ B1_F16_Ant308 ✓ B1_F16_Ant307	
Save as a template. OK	Cancel	li.

Figure 48. Choose Antennas Filtered by Field

7.3.1.2 Configure Display Parameters

The display parameters including: Signal Height, Display Type, Display Transparency and Display Legend, as shown in Figure 49.

n figur a Genera	ate Predict	tion - BestSignalLevel			
Signal Displa	Height: 1 y Type: C	ContinuousInterval	Transpar	ency:	
ID	Min	Max	Color	Label	
1	-60	-50	-	-60 <= Best Signal Level < -50	_
2	-70	-60	-	-70 <= Best Signal Level < -60	
3	-80	-70		-80 <= Best Signal Level < -70	
4	-90	-80		-90 <= Best Signal Level < -80	
5	-100	-90	-	-100 <= Best Signal Level < -90)
6	-110	-100	-	-110 <= Best Signal Level < -10	0
7	-120	-110		-120 <= Best Signal Level < -11	0
A	ction			Import Ex	port
Save	e as a templ	ate. OK	Cance		port

Figure 49. Configure Display Parameters

As the system performance prediction is carried out in full 3D calculation. There is a propagation result corresponding to a space point of a building. The size of the space point is determined by the resolution that configured in General tab. For instance, if the unit of the building is metres; and the resolution is configured as 0.2. Then each space point will be a cube with the size of 0.2*0.2*0.2 (Metre). The Signal Height to be configured here will determine the height of the signal prediction result that used to display in FLD or 3D view. Users are able to define the transparency of SPE results. There are two types, Continuous Interval and Continuous, of display style can be applied.

Legend can be edited by changing, adding or removing a step. The colour of the step can also be customized. The "Auto Colour" function enables users to configure colours of steps automatically, as shown in Figure 50. It is recommended that the default colour is used whenever the legend is edited.

🔏 Ranplan iBuildNet V1.0.0.282 - C:\Users	s\PWang\Desktop\P	roject\Axis Demo	.ibp				
File Edit View Insert Tools Rep	port Help						
💉 🚰 🛃 🗳 🚟 🐰 🖻 🛍 🗙 *	୨ ୯ 🚰 🗄 🕵	🔜 🚊 🔳 100%		- • • • •	l 📑 💁 🖬		🗈 🕂 📐 🔶 📃 🔤
3D View B1_F1 B1_F3 Configu	urate Prediction - Be	stSignalLevel				_ 🗆 🗙	ediction 👻 🕂 🗙
	oral Display						Propagation Models
							TD-SCDMA_2020
Sig	nal Height: 1		Tra	ansparency:		-J	
Dis	play Type: Continuous	sInterval 💌		Transpar	_{rent} O	paque	
IC	D Min	Max	Color	Label			
	1 -60	-50			nal Level < -50		
	2 -70	-60		 -/0 <= Best Sig -80 <= Best Sig 	nal Level < -60 nal Level < -70	- II	
	4 -90	-80		-90 <= Best Sig	gnal Level < -80		
	5 -100	-90		 -100 <= Best S 	ignal Level < -90		
	5 -110 7 -120	-110	-	-110 <= Best S	ignal Level < -100 ignal Level < -110		
							Network E Project
						- 1	aphic Object Property 🗢 👎 🗙
							2↓ □
	Action			Imp	port Exp	ort	Misc
	Insert Before	Ctrl+Shift+N	1				Building Name B1 FloorName B1 F6
	Insert After	Ctrl+N		Cancel			
	< Delete	Del					2
	Update Label	Ctrl+U				-	
(1) B1_	Select All	Ctrl+A				a	
B1_F6_Spt	Update All Labels	Ctrl+Shift+U			,	U L	
B1_F6_Ant174	Reset to Default	Ctrl+D				B1_F6_ B	uilding Name
	Auto Color	•	Re	verse Ctrl+R	Building @ D	B	uilding Name
			De	fault			
Tasks			Re	d, Green, Blue		_	→ # ×
ID Name Prog	gress State	Description	Yel	low, Red, Blue			
			Per	d. Blue			
			WH-	ite Black			
			0	ange Durole			
			Un	ange, Purpie	-		
				0.00, 0.00			Meters ,;;

Figure 50. Auto Define Legend Colour

Any legend can be imported into the current prediction. A configured prediction can also be exported. The exported legend will be saved in .cfg format.

7.3.2 Start Calculation

After a new prediction is created, users are able to calculate by right clicking on the prediction and choose "Calculate".

Figure 51. Start to Calculate a Prediction

7.3.3 End Calculation

When a calculation is started, the progress of the calculation can be viewed on the task bar as shown in Figure 52. The calculation can be ended by clicking on the "Stop" button that is indicated in Figure 52.

Figure 52. Check Calculation Progress in Task Bar

7.3.4 View SPE Result

Users are able to check the SPE result once the calculation is completed. The result can be viewed in FLD (2D) and 3D view. The signal level (in dBm) of any point in the building can be viewed in FLD mode. The signal level is stated on the status bar as shown in Figure 53.

3D view window contains Building Structure modelling (BSM), Floor Layout Design (FLD) and System Performance Evaluation (SPE). There are three display modes: docked, floated and maximized. Under floated mode, users can easily compare between 2D view and 3D view. When users editing FLD or NSD, it is not necessary to see 3D in real time, in this case users can set the mode to docked mode. The default 3D mode of the system is docked mode. Maximized mode can display 3D view more accurate and with a wider view, so it helps users to change the detail of the 3D view.

Figure 53. View SPE Result in FLD

Figure 54. View SPE Result in 3D Mode

7.3.4.1 Configure Display Setting of SPE Result in 3D View

The display setting of SPE result in 3D view can be configured by clicking on "Display Setting" as shown in Figure 55.

Figure 55. Configure Display Setting

The "3D View Display Setting" dialog will be displayed, as in Figure 56. Users are able to choose whether to display devices, building outline and its surface, and signal (SPE results). The colour of cable and ground can also be configured here.

Building	3D Show	
B1 💌	Show Device	
Structure Signal Signal Structure Structure Signal Signal	Cable Color: Ground Color:	
□ ♥ B1_F2	Building Style	Surface
✓ Structure ✓ Signal	Display Options Display Options Image: All Structures Display	All Signals Display

Figure 56. 3D View Display Setting

7.3.5 Re-use Current Path loss Data for Other Predictions

When anyone of the four prediction type has been calculated, the path loss data of all the antennas of current network design are obtained. Other prediction types can be calculated base on the path loss data, if there is no modification on the current network design. Therefore it will be time efficient to re-use the path loss data to generate other performance indicators. In order to re-use the path loss data, users can create a new prediction type, and then choose "Calculate" in the SPE right click menu, see Figure 57.

If there is no available previous prediction result, the SPE engine will calculate the selected system as a new calculation.

Figure 57. Calculate New Prediction Base on Previous Result

7.3.6 Force Calculate Prediction

In the case that users do not prefer to re-use the previous prediction result, the "Force Calculate" function, as shown in Figure 58, can start a new calculation for this prediction rather than re-use the previous prediction result.

Figure 58. Force Calculate

7.3.7 Edit Legend

As mentioned in previous sessions, the legend of calculation result can be defined when creating a new prediction. But, as the prediction results have not been obtained, users may find that the legend that was defined before is no longer suitable. Therefore, editing legend after a prediction result is obtained is necessary. This can be done by a right click on a prediction result and choose "Edit Legend", as shown in Figure 59.

Figure 59. Edit Legend

7.3.8 Obtain Statistic Information

Statistic Information is very important to network engineers, as the optimize plans are often obtained in according with the statistic information. The statistic information can be viewed and exported from Statistic dialog, which can be opened by right click on a prediction result and choose "Statistic", see Figure 60.

Figure 60. Open Statistic Dialog

The statistic information can be presented in terms of percentage and area. There are a number of chart types can be applied with, such as Column, Point, Pie, Bar, Radar etc. Users are able to customize the statistic chart and export the chart.

Figure 61. Statistic Information

7.4 Printing

Users can use print function to print including FLD, BSM, NSD view printing.

7.4.1 Generate image

From menu, click "File" then "Print To Picture".

Figure 62. Print to Picture

7.4.2 Print Preview

In order to preview the print, users should go to menu bar, then click "File" and choose "Print preview", a window pops up as shown in Figure 63. Users are able to adjust the size of the target image by using the zoom button. The size of images can be quickly adjusted by selecting "One Page", "Two Pages" and so on.

Figure 63. Print Preview

7.4.3 Print

Similar to print to picture, users can go to menu bar and click "File" then choose "Print". Also Ctrl + P is the shortcut provided for printing.

Figure 64. Print

7.5 Conclusion

Ranplan iBuildNet provides several built-in propagation models. They are able to quickly and effectively evaluate the performance of the wireless signal for existing buildings and network systems. The generated SPE performance evaluation can be displayed, analyzed, and printed in both 2D and 3D. Different systems in a same building can be simulated by Ranplan iBuildNet; the SPE can be compared and analyzed horizontally. In doing so, the engineer can deploy indoor antennas according to requirement and based on the result of current topology, make a comparison and analysis between real data and simulation data. Finally obtain an optimized indoor wireless network design solution.

8 Project Report

Users are able to generate different kinds of reports which will be of a great convenience to system designers, constructors, project estimators, project supervision and related personnel. The current version of iBuildNet is able to generate four kinds of reports: equipment list report, cost details report, cable routing report and layout plan report.

8.1 Generate Report

There are two ways to generate reports:

- From toolbar.
- From menu bar.

Figure 65. Generate Project Report

8.1.1 Equipment List Report

All the devices in Network System Design and Floor Layout Design are included in the equipment list report. In order to open the equipment list report, users can click on "Equip-

ment List Report" icon from tool bar. Alternatively, go to the menu bar, then click on "Report" and choose "Equipment List Report".

The equipment list report will provide a summer of all the devices. Users are able to check the following properties of devices:

- Type: The type of devices, such as Antenna, Cable, Splitter and so on.
- Manufacturer: The manufacturer of devices.
- Model: The model of devices.
- Comments: General comments of devices.
- Quantity: The quantity of devices that used in this project.

An example of equipment list report can be found in Figure 66.

Туре	Manufacturer	Model	Comments	Qty
Antenna	Ramplan	ANID_8245	Directional Indoor Antenna (Ceiling Mounted). 824 MHz - 2500 MHz 4.5 dBi Gain.	4
Antenna	Ramplan	ANTO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	141
Cable	Ramplan	CAB_12F	1/2" Flexible Foam Dielectric Coaxial Cable	1294.96 m
Splitter	Ramplan	PS-02C-NFA	2-Way High Power Cavity Splitter - 800-2500 MHz - N Female Connectors - Standard	59
Splitter	Ramplan	T-07C-NFA	7 dB Coupling - Cavity Coupler - S00-2500 MHz - N-Female Connectors	34
Splitter	Ramplan	T-06C-NFA	6 dB Coupling - Cavity Coupler - 800-2500 MHz - N-Female Connectors	18
Splitter	Ramplan	T-05C-NFA	5 dB Coupling - Cavity Coupler - S00-2500 MHz - N-Female Connectors	s
Splitter	Ramplan	PS-03C-NFA	3-Way High Power Cavity Splitter - 800-2500 MHz - N Female Connectors - Standard	4
Splitter	Ramplan	T-10C-NFA	10 dB Coupling - Cavity Coupler - S00-2500 MHz - N-Female Connectors	15

Equipment List Report

Figure 66. Example of Equipment List Report

8.1.2 Cost Detail Report

The cost details report includes device cost, construction cost and other costs. In order to open the equipment list report, users can click on "Cost Detail Report" icon from tool bar. Alternatively, go to the menu bar, then click on "Report" and choose "Cost Detail Report ".

The cost detail report contains the following information:

- Type: The type of devices, such as Antenna, Cable, Splitter and so on.
- Manufacturer: The manufacturer of devices.
- Model: The model of devices.
- Comments: General comments of devices.
- Quantity: The quantity of devices that used in this project.

- Unit Cost: The unit price of the device. The unit price is set as 0 by default. As the price of equipment is vary from suppliers. Users are able to define it in device database.
- Equipment Cost: The total cost of this device. (Equipment Cost = Unit Cost * Quantity)
- Construction Cost: The total cost to install this device. The construction cost is set as 0 by default. Users are able to define it in device database.

An example of cost detail report can be found in Figure 67. In this example, all the prices are set to be zero, as the price will be vary from project to project.

Туре	Manufacturer	Mode1	Connents	Qty	Unit Cost	Equipment Cost	Construction Cost
Antenna	Ranplan	ANTD_8245	Directional Indoor Antenna (Ceiling Mounted). 824 MHz - 2500 MHz 4.5 dBi Gain.	4.00	0.00	0.00	0. 00
Antenna	Ranplan	ANTO_8243_17 103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	141.00	0.00	0.00	0. 00
Cable	Ranplan	CAB_12F	1/2° Flexible Foam Dielectric Coaxial Cable	1294.96 m	0.00	0.00	0.00
Splitter	Ranplan	PS-02C-NFA	2-Way High Power Cavity Splitter - 800-2500 MHz - N Female Connectors - Standard	59.00	0.00	0.00	0. 00
Splitter	Ranplan	T-07C-NFA	7 dB Coupling - Cavity Coupler - SOO-2500 MHz - N-Female Connectors	34.00	0.00	0.00	0. 00
Splitter	Ranplan	T-06C-NFA	6 dB Coupling - Cavity Coupler - SOO-2500 MHz - N-Female Connectors	18.00	0.00	0.00	0. 00
Splitter	Ranplan	T-05C-NFA	5 dB Coupling - Cavity Coupler - 800-2500 MHr - N-Female Connectors	S. 00	0.00	0.00	0. 00
Splitter	Ranplan	PS-03C-NFA	3-Way High Power Cavity Splitter - SOO-2500 MHz - N Female Connectors - Standard	4.00	0.00	0.00	0. 00
Splitter	Ranplan	T-10C-NFA	10 dB Coupling - Cavity Coupler - SOO-2500 MHr - N-Female Connectors	15.00	0.00	0.00	0. 00
				Sub Tota	1	0	O
					Total		0

Cost Details Report

Figure 67. Example of Cost Detail Report

8.1.3 Cable Routing Report

The cable routing report contains all the information about the routing of the cables as well as the detail of the devices to which they are connected. In order to open the cable routing report, users can click on "Cable Routing Report" icon from tool bar. Alternatively, go to the menu bar, then click on "Report" and choose "Cable Routing Report".

The cable routing report contains the following information:

- ID: Device ID
- Cable From (Source Side):
 - Part Type: Type of devices.
 - Part Conn: The port of a device to be used for this connection.

- Floor: The location of the device.
- Cable To (Mobile Side):
 - Part Type: Type of devices.
 - Part Conn: The port of a device to be used for this connection.
 - Floor: The location of the device.
- Cable Type: Cable type can be coaxial or optical.
- Cable Model: Model of the cable.
- Cable Mfg: Manufacture of the cable.
- Length:
 - Estimated: The length of cable estimated by iBuildNet
 - Real: Real length of cable that used in a project.

An example of cost detail report can be found in Figure 68.

	Cable 1	From (Source S	Side)	Cable	To (Mobile Si	ide)				Len	gth
ID	PartType	PartConn	Floor	PartType	PartConn	Floor	Cable Type	Cable Model	Cable Mfg	Estimated	Real
0	Splitter	P1	B1_F2	Splitter	P2	B1_F3	Coaxial	CAB_12F	Ranplan	4.68 m	0 m
1	Splitter	P1	B1_F3	Splitter	P3	B1_F3	Coaxial	CAB_12F	Ranplan	1.04 m	0 m
2	Base Station	output	B1_F9	Splitter	In	B1_F9	Coaxial	CAB_12F	Ranplan	3.60 m	0 m
3	Splitter	In	B1_F8	Splitter	Through	B1_F9	Coaxial	CAB_12F	Ranplan	6.58 m	0 m
4	Antenna	Ant	B1_F9	Splitter	P3	B1_F9	Coaxial	CAB_12F	Ranplan	6.98 m	0 m
5	Antenna	Ant	B1_F9	Splitter	P2	B1_F9	Coaxial	CAB_12F	Ranplan	4.58 m	0 m
6	Splitter	P1	B1_F9	Splitter	Through	B1_F9	Coaxial	CAB_12F	Ranplan	5.94 m	0 m
7	Antenna	Ant	B1_F9	Splitter	Coupling	B1_F9	Coaxial	CAB_12F	Ranplan	1.04 m	0 m
8	Splitter	In	B1_F9	Splitter	Through	B1_F9	Coaxial	CAB_12F	Ranplan	3.44 m	0 m
9	Antenna	Ant	B1_F9	Splitter	Coupling	B1_F9	Coaxial	CAB_12F	Ranplan	5.30 m	0 m
10	Splitter	In	B1_F9	Splitter	Through	B1_F9	Coaxial	CAB_12F	Ranplan	1.60 m	0 m
11	Antenna	Ant	B1_F9	Splitter	P3	B1_F9	Coaxial	CAB_12F	Ranplan	1.32 m	0 m
12	Antenna	Ant	B1_F9	Splitter	P2	B1_F9	Coaxial	CAB_12F	Ranplan	2.14 m	0 m
13	Splitter	P1	B1_F9	Splitter	Coupling	B1_F9	Coaxial	CAB_12F	Ranplan	15.38 m	0 m
14	Splitter	In	B1_F9	Splitter	Through	B1_F9	Coaxial	CAB_12F	Ranplan	24.06 m	0 m
15	Antenna	Ant	B1_F9	Splitter	P2	B1_F9	Coaxial	CAB_12F	Ranplan	6.66 m	0 m
16	Antenna	Ant	B1_F9	Splitter	P3	B1_F9	Coaxial	CAB_12F	Ranplan	10.22 m	0 m
17	Splitter	P1	B1_F9	Splitter	Through	B1_F9	Coaxial	CAB_12F	Ranplan	2.72 m	0 m
18	Antenna	Ant	B1_F9	Splitter	Coupling	B1_F9	Coaxial	CAB_12F	Ranplan	7.62 m	0 m
19	Splitter	In	B1_F9	Splitter	Through	B1_F9	Coaxial	CAB_12F	Ranplan	2.56 m	0 m
20	Antenna	Ant	B1_F9	Splitter	Coupling	B1_F9	Coaxial	CAB_12F	Ranplan	0.67 m	0 m
21	Splitter	In	B1_F9	Splitter	Through	B1_F9	Coaxial	CAB_12F	Ranplan	7.12 m	0 m
22	Antenna	Ant	B1_F9	Splitter	P2	B1_F9	Coaxial	CAB_12F	Ranplan	6.90 m	0 m

Cable Routing Report

Figure 68. Example of Cable Routing Report

8.1.4 Layout Plan Report

The layout plan report is used to record the detailed information of devices as well as their locations. In order to open the layout plan report, users can click on "Layout Plan Report" icon from tool bar. Alternatively, go to the menu bar, then click on "Report" and choose "Layout Plan Report ".

The layout plan report contains the following information:

- ID: The device ID generated by iBuildNet
- Type: The type of devices, such as Antenna, Cable, Splitter and so on.
- Manufacturer: The manufacturer of devices.
- Model: The model of devices.
- Comments: General comments of devices.
- Plan: The floor that the device will be installed.

An example of layout plan report can be found in Figure 69.

Cross Reference Report

ID	Туре	Manufacturer	Model	Comments	Plan
B1_F1_Ant0	Antenna	Ranplan	ANTO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CEMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F1
B1_F1_Ant1	Antenna	Ranplan	ANIO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F1
B1_F1_Ant10	Antenna	Ranplan	ANTO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F1
B1_F1_Ant2	Antenna	Ranplan	ANIO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F1
B1_F1_Ant3	Antenna	Ranplan	ANTO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F1
B1_F1_Ant4	Antenna	Ranplan	ANIO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F1
B1_F1_Ant5	Antenna	Ranplan	ANIO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F1
B1_F1_Ant6	Antenna	Ranplan	ANIO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F1
B1_F1_Ant7	Antenna	Ranplan	ANIO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F1
B1_F1_AntS	Antenna	Ranplan	ANTO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F1
B1_F1_Ant9	Antenna	Ranplan	ANTO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F1
B1_F2_Ant11	Antenna	Ranplan	ANTO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F2
B1_F2_Ant12	Antenna	Ranplan	ANIO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F2
B1_F2_Ant13	Antenna	Ranplan	ANIO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F2
B1_F2_Ant14	Antenna	Ranplan	ANIO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F2
B1_F2_Ant15	Antenna	Ranplan	ANIO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F2
B1_F2_Ant16	Antenna	Ranplan	ANIO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F2
B1_F2_Ant17	Antenna	Ranplan	ANIO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F2
B1_F2_Ant18	Antenna	Ranplan	ANIO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F2
B1_F2_Ant19	Antenna	Ranplan	ANIO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F2
B1_F2_Ant20	Antenna	Ranplan	ANTO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F2
B1_F2_Ant21	Antenna	Ranplan	ANTO_8243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F2
B1_F3_Ant22	Antenna	Ranplan	ANIO_S243_17103	Omnidirectional Antenna (Ceiling Mount), GSM/CDMA/WiFi (2.4 GHz) - 3 dBi Gain	B1_F3

Figure 69. Layout Plan Report

8.2 Print Report

In order to print report, users should click on the printer icon from the toolbar on the report viewer, as shown in Figure 70.

Viewer				
1 of 1	▶ ▶ € ⊛	😳 🖨 🔲 A	🛛 🔍 🔹 Whole Page 🔹 👘	Find
	Click here t print report	men	Click here to setup printing parameters	
Туре	Manufacturer	Mode1	Commerits	Qty
Antenna	Manplan	ANTD_8245	Directional Indoor Antenna (Ceiling Nounted). 824 MHz - 2500 MHz 4.5 dBi Cain.	4
Antenna	Manplan	ANTO_8245_17105	Omnidirectional Antenna (Ceiling Nount), GSN/CDNA/WiFi (2.4 GHz) - 5 dBi Gain	141
Cable	Manplan	CA5_12F	1/2" Flexible Foam Dielectric Coaxial Cable	1294.96 m
Splitter	Manplan	P5-02C-NFA	2-Way High Fower Cavity Splitter - 800-2800 MHz - N Female Connectors - Standard	59
Splitter	Manplan	T-07C-NFA	7 d5 Coupling - Cavity Coupler - 800-2800 MHz - N-Female Connectors	54
	Manplan	T-06C-NFA	6 d5 Coupling - Cavity Coupler - 800-2600 MHz - N-Female Connectors	18
Splitter				
Splitter Splitter	Manplan	T-OSC-N#A	5 d5 Coupling - Cavity Coupler - 800-2500 MHz - N-Female Connectors	8
Splitter Splitter Splitter	Fanplan Fanplan	T-05C-NFA PS-03C-NFA	5 d5 Coupling - Cavity Coupler - 800-2800 MHz - N-Female Connectors 5-Way High Power Cavity Splitter - 800-2800 MHz - N Female Connectors - Standard	8

Figure 70. Print Report

8.3 Export Report

In order to export the report, users should click on the disk icon from the toolbar on the report viewer, as shown in Figure 71. Reports can be exported and saved in Acrobat pdf, Microsoft Word or Microsoft Excel format.

ort Viewer				
	▶ ▶ € ⊛	🕲 🌐 🔲 A	🛛 🛃 🔻 🛛 Whole Page 🔹 🔽	Find
	Ec		lick here to sport report	
Туре	Manufacturer	Mode1	Connents	Qty
Antenna	Manplan	ANTD_8245	Directional Indoor Antenna (Ceiling Mounted). 824 MHz - 2500 MHz 4.5 dBi Gain.	4
Antenna	Manplan	ANTO_8245_17105	Omnidirectional Antenna (Ceiling Mount), GSM/CDNA/WiFi (2.4 GHz) - 3 dBi Gain	141
Cable	Manplan	CA5_127	1/2" Flexible Foam Dielectric Coaxial Cable	1294.96 m
Splitter	Manplan	PS-02C-NFA	2-Way High Fower Cavity Splitter - 800-2800 MHz - N Female Connectors - Standard	69
Splitter	Manplan	T-07C-NFA	7 d5 Coupling - Cavity Coupler - 800-2800 MHr - N-Female Connectors	54
Splitter	Manplan	T-06C-N#A	6 d5 Coupling - Cavity Coupler - 800-2800 MHz - N-Female Connectors	18
Splitter	Manplan	T-OSC-NFA	5 d5 Coupling - Cavity Coupler - 800-2800 MHr - N-Female Connectors	8
Splitter	Manplan	PS-03C-N#A	5-Way High Power Cavity Splitter - 800-2800 NHz - N Female Connectors - Standard	4
Splitter	Manplan	T-10C-NFA	10 d5 Coupling - Cavity Coupler - 800-2800 MHz - N-Female Connectors	15

Figure 71. Export Report

9 Conclusions

In this deliverable, an indoor radio network planning and optimisation suite of tools is defined and developed. This suite of tools is not only able to plan new indoor networks, but also optimise deployed systems. It will help the network operators to reduce the time and cost of planning and optimising indoor projects. A large part of design work can be done automatically by this suite of tools. Since an intelligent 3D ray tracing indoor propagation model is integrated, an accurate system evaluation result can be obtained in a short time. The reporting module will assist project managers to manage the budget of projects. Automatic system topology generation will deliver a clear overview of the network structure to the network installation engineers. The intelligible 2D and 3D network design plot will help to make sure the location of devices can be installed accurately.

10 Reference

[1] Morten Tolstrup, "Indoor Radio Planning A Practical Guide for GSM, DCS, UMTS and HSPA", John Wiley & Sons Ltd, 2008

[2] www.ranplan.co.uk

[3] "DXF Reference", Autodesk, Inc, 2011

[4] "Ranplan Radiowave Propagation Simulator: The User Manual", Ranplan Wireless Network Design Ltd., 2011

11 Glossary of Terms

- 2D Two Dimension
- 2G Second Generation
- 3D Three Dimension
- 3G Third Generation
- 4G Fourth Generation
- BBU Base Band Unit
- BSM Building Structure Modelling
- CDMA Code Division Multiple Access
- DAS Distributed Antenna System
- dB Decibel
- FLD Floor Layout Design
- FP7 Seventh Framework Programme
- GHz Gigahertz
- GSM Global System for Mobile communications
- GUI- Graphic User Interface
- Hz-Hertz
- ID Identity
- KPI Key Performance Indicator
- LTE Long Term Evolution
- Mbps Megabits Per Second
- MHz Megahertz
- NLOS Non Line of Sight
- NSD Network System Design
- RAN Radio Access Network
- RF-Radio Frequency
- RRPS Ranplan Radio Propagation Simulator
- RRU- Radio Remote Unit
- SPE System Performance Evaluation
- UMTS Universal Mobile Telecommunications System
- WCDMA Wideband CDMA